TEM and STEM analysis on heat-treated and in vitro plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings.

نویسندگان

  • Z L Dong
  • K A Khor
  • C H Quek
  • T J White
  • P Cheang
چکیده

A cogent understanding of the microstructure, and indeed nano-structure, of hydroxyapatite (HA) and the interface between Ti-6Al-4V and HA is crucial to its appropriateness as a biomaterials. This paper reports the analysis of plasma-sprayed HA/Ti-6Al-4V composites by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) to elucidate the intricate nature of the materials following plasma spray processing and in vitro evaluation. The novel Ti-6Al-4V/HA composite coating, with approximately 48 wt% HA, had demonstrated attractive tensile adhesion strength (approximately 28 MPa) and improved Young's modulus (approximately 55 GPa). Experimental results demonstrated that amorphous calcium phosphate and fine HA grains were formed during rapid splat solidification in the as-sprayed composite coatings. Small Ti-6Al-4V grains were observed adjacent to the amorphous calcium phosphate. The coatings were further heat treated at 600 degrees C for 6 h, and significant crystallisation of the amorphous calcium phosphate phase took place. However, complete crystallisation was not achieved at this temperature, as the coatings invariably contained a small amount of amorphous calcium phosphate phase in some local regions. After immersion in simulated body fluid for 2 weeks and 10 weeks, TEM and STEM confirmed that the interfaces inside the coating maintained good microstructural integrity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early bone apposition in vivo on plasma-sprayed and electrochemically deposited hydroxyapatite coatings on titanium alloy.

Three different implants, bare Ti-6Al-4V alloy, Ti-6Al-4V alloy coated with plasma-sprayed hydroxyapatite (PSHA), and Ti-6Al-4V alloy coated with electrochemically deposited hydroxyapatite (EDHA), were implanted into canine trabecular bone for 6 h, 7, and 14 days, respectively. Environmental scanning electron microscopy study showed that PSHA coatings had higher bone apposition ratios than thos...

متن کامل

Interface Characterization of Plasma Sprayed Hydroxyapatite Coat on Ti 6Al 4V

Hydroxyapatite (HA), a material proven to be biocompatible within the human body, has been produced to a high level of purity. This material has been applied as a coating on Ti-6Al-4V alloy by using the air plasma spraying technique. The coat was characterizted with SEM, XRD, FTIR and Raman spectroscopy methods to consist of a mixture of calcium phosphates including HA mainly and traces of tric...

متن کامل

Wear studies on plasma-sprayed Al2O3 and 8mole% of Yttrium-stabilized ZrO2 composite coating on biomedical Ti-6Al-4V alloy for orthopedic joint application

This paper presents the wear characteristics of the composite ceramic coating made with Al2O3-40wt%8YSZ on the biomedical grade Ti-6Al-4V alloy (grade 5) used for total joint prosthetic components, with the aim of improving their tribological behavior. The coatings were deposited using a plasma spraying technique, and optimization of plasma parameters was performed using response surface method...

متن کامل

CaO-P2O5 glass hydroxyapatite double-layer plasma-sprayed coating: in vitro bioactivity evaluation.

Double-layer composite coatings composed of a P2O5-based glass/Ca10(PO4)6(OH)2 (HA) mixture top layer and a simple HA underlayer, on Ti-6Al-4V substrates, were prepared using a plasma-spraying technique. The in vitro bioactivity of these coatings was assessed by immersion testing in simulated body fluid. Both scanning electron microscopy (SEM) analysis and the ionic solution changes followed by...

متن کامل

Effect of Crystallization on the Bonding Strength and Failures of Plasma-Sprayed Hydroxyapatite

Hydroxyapatite coatings were synthesized on Ti-6Al-4V substrates using the plasma spraying process followed by vacuum and atmospheric post-heat treatments at various elevated temperatures. This study provides an evaluation of the bonding strength and crystallization rate of HACs resulting from the variations in crystallinity and thermal induced cracking. Experimental results provide evidence th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 24 1  شماره 

صفحات  -

تاریخ انتشار 2003